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Abstract—Over the past few years, due to the boom of advances
in image processing, edge computing, and wireless networking,
Unpiloted Aerial Vehicles (UAVs), often referred to as drones,
have become an important enabler to support a wide variety of
scientific applications, ranging from environmental monitoring,
disaster response, wildfire monitoring, to the survey of archaeo-
logical sites. In this article, we present the FlyNet platform, which
extends an existing workflow management system to support and
manage scientific workflows. FlyNet enables automated resource
allocation, workflow instrumentation, and network service sup-
port to facilitate researchers in their goal to analyze data for
new scientific discoveries. In addition, FlyNet provides network
services management to support QoS for efficient data transport
between edge devices, edge servers, and the cloud.

Index Terms—Edge and Cloud Computing, Workflows, UAVs

I. INTRODUCTION

Drones are literally on the horizon. Unpiloted Aerial Vehi-
cles (UAVs) (often referred to as drones) are now supporting
a wide range of scientific applications, ranging from environ-
mental monitoring, disaster response, and wildfire monitoring,
to the survey of archeological sites. The success of these ap-
plications heavily depends on the ability to efficiently manage
and analyze large volumes of data generated by drones. This is
where scientific workflow support comes into play, providing
researchers with the tools and techniques to better manage and
analyze their data. In this context, scientific workflows can be
characterized as a series of processes that are executed in a
specific order to analyze the data generated by drones. Exam-
ples include the processing and analysis of video, imagery, and
other sensor data. By using workflow management systems
for scientific UAV applications, researchers can create data
management and analysis processes with the goal to efficiently
and effectively extract insights and new knowledge from the
collected data.

In parallel, there has been an evolution of the cloud com-
puting paradigm with the advent of edge computing, providing
researchers with the opportunity to span their workflows across
the edge-to-cloud spectrum based on the resource needs of
their scientific applications. To streamline data management
based on application requirements, resources across the spec-
trum need to be appropriately allocated. Unfortunately, select-
ing the appropriate set of resources for a specific scientific

workflow is often a challenge for domain scientists who are
not experts in distributed computer systems.

FlyNet introduces a platform to support scientific workflows
from the edge to the core for UAV and other edge-to-cloud
applications by automating the processes of resource alloca-
tion, workflow implementation, and network service support
to support researchers in their goal to analyze data for new
scientific discoveries.

II. FLYNET SYSTEM ARCHITECTURE

The FlyNet architecture (shown in Figure 1), supports the
composition of end-to-end (edge-to-core) workflows capable
of supporting scientific UAV and other edge-to-cloud applica-
tions.

A. Edge-to-Core Infrastructure

The edge-to-core infrastructure depicted at the bottom of
Figure 1 covers all points in the spectrum of response latency
for application processing - the latency spectrum. While some
processing needs to be performed on the devices and the net-
work edge to support the increasing scale of IoT applications,
some computations need to be performed in-network and some
can be offloaded to core computing resources “far” from the
edge devices.

There are several categories in this latency spectrum - edge
devices, edge servers, in-network, and core computing. While
edge devices provide minimum latency for response times,
they have limited computational capabilities and/or power
constraints. Thus, on-board resources are often not sufficient
to support the UAV application processing needs. Edge servers
or nodes that comprise an edge computing infrastructure
have more computational power and fast turnaround time, but
support only limited scales of computation (e.g. they might
be able to run very lightweight algorithms, but not data and
compute-intensive workloads like deep learning models).

As the latency on the spectrum increases, processing packets
and turning them around using in-network computing capabil-
ities (either compute resources or specialized programmable
hardware deployed in the network core) can be envisioned.
This will reduce latency compared to cases where data has to
be transmitted all the way to the computing core. For UAV
data processing that needs substantially more computational
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Fig. 1. FlyNet System architecture showing how applications can leverage edge to core infrastructure via FlyNet services.

resources (e.g., GPUs for training machine learning models
for object detection), data needs to travel all the way to core
cloud resources. This incurs the maximum latency with the
benefit that high processing power can be utilized.

B. FlyNet Services: Resource Provisioning

To implement this overall architecture, FlyNet uses a
network-centric platform called Mobius [1] with support for
provisioning programmable cyberinfrastructure comprised of
FABRIC [2] and Chameleon Cloud [3] testbeds. Mobius
makes it easier for applications to provision and manage
the appropriate infrastructure resources for their execution.
It supports multi-clouds and automated network provisioning
to connect the clouds. It leverages the jclouds API, which
supports OpenStack based clouds, to provision Bare Metal
(BM) nodes and VMs from Chameleon. It uses the FABRIC
FABlib API [4] to (a) provision VMs from FABRIC with
directly attached PCI devices – GPUs, Network Cards, NVMe
drives, FPGAs, and (b) to provision Layer 2/3 networks and
facility ports [5] for connecting different FABRIC Core and

Edge nodes with external infrastructure. Users, applications,
and workflow management systems interact with Mobius using
a REST API for provisioning resources and deploying services
(Section II-C).

C. FlyNet Services: Service Deployment

Container setup and orchestration. Since we envision that
edge servers will be shared by more than one application
the FlyNet architecture supports a container-based application
deployment approach by using KubeEdge [6], which pro-
vides container orchestration at the edge. This containerized
approach provides FlyNet with the required flexibility for
workflows that support drone-based applications. The use of
containers adds the benefit of simplified deployments of appli-
cations on edge nodes and supports migration of applications
between edge nodes. The latter is an important requirement
of drone-based applications, where the distance and thus the
resulting latency between a drone and an edge node might
become too large for effective and safe operations. In that case,
migrating the application to a different edge node that is closer



to the drone is critical. To support FlyNet, we extended Mo-
bius to automatically deploy a container orchestration service
using KubeEdge, which automatically instantiates KubeEdge
clusters on the provisioned nodes. In order to support bare
metal container orchestration on the edge resources, as on the
Chameleon edge resources - CHI@Edge [7], Mobius takes
advantage of the REST API [8] to provision the containers.
Computation and data management services. Mobius ser-
vices also allow applications and workflow systems to deploy
HTCondor [9] clusters - HTCondor Master/scheduler and
HTCondor workers - on the provisioned resources selected
from (potentially) multiple cloud platforms (FABRIC and
Chameleon), such that workflow/application tasks can be read-
ily scheduled and executed. Mobius automates configurations
for the networks, IP addresses, setup of the daemons and
makes it easier for scientists and applications to use the
provisioned infrastructure.
Monitoring setup and data collection - Prometheus. Mo-
bius also automatically deploys Prometheus [10] monitoring
agents on the provisioned resources - containers/VMs/BM.
These agents monitor different resource metrics, e.g. CPU
loads, continuously and stream the measurements to a central
Prometheus server. The Prometheus server aggregates all the
monitoring time series data from the agents and exposes
an API for applications. The applications can query on the
observed performance attributes of the resources and make
key decisions for resource management. Such monitoring data
is critical for edge resource selection.

III. EDGE-TO-CLOUD WORKFLOW ORCHESTRATION

A. Challenges of Edge-to-Cloud Execution

Edge-to-cloud computing environments make it possible for
applications and systems to capitalize on the desirable advan-
tages offered by both computing paradigms: faster response
times, data locality, cost savings at the edge, scalability, high
availability, and reliability provided by the cloud. Effectively
utilizing both computing paradigms within such a complex
execution environment for a given application presents a
number of challenges. First, available resources and their states
need to be visible in order to make scheduling decisions. Some
environments with IoT devices may experience churn due to
limited power and network connection. This is especially the
case for UAVs that might come in and out of communication
range when executing a mission. Second, scheduling decisions
must be made. When running in the cloud, both compute and
data movement costs may need to be considered. Incorporating
the edge may involve taking into consideration energy con-
sumption, limited compute capacity, and storage constraints.
In addition to scheduling decisions, there may be resource
provisioning decisions that can be made to better accommo-
date varying levels of expected load. Such provisioning can
happen at the edge, for example in a cloudlet or on idle edge
devices. Third, software systems must be in place to execute
computations at both ends and automatically handle failures
when they occur. Finally, the ability to capture fine-grained

performance metrics or provenance data is indispensable to
optimizing executions on an edge-to-cloud continuum.

B. Edge-to-Cloud Workflow System Design

In order to orchestrate workflows that span edge and cloud
resources, FlyNet uses the Pegasus Workflow Management
System [11] Pegasus has a number of key features that make it
a particularly good candidate to provide the automation needed
to span the edge-to-cloud continuum. Most importantly, it has
the notion of an abstract workflow. This is a workflow descrip-
tion that is resource independent and captures the workflow at
the science level: the codes used for the computations, the data
needed, and generated by the workflow tasks. Pegasus takes
this abstract workflow description and maps it to the available
resources, generating the necessary resource-dependent scripts
for job submission and adding the necessary data movement
between jobs by invoking appropriate data transfer protocols.
These resource-specific scripts produced by Pegasus form
the executable workflow that is then passed to HTCondor’s
DAGMan [12] for execution.

Pegasus’ architecture and the use of proven and versatile
technologies such as HTCondor allowed us now to extend
the workflows to the edge. HTCondor can run on any edge or
cloud resource running Linux, macOS, or Windows, creating a
hybrid edge-cloud infrastructure. In order to match jobs specif-
ically with edge or cloud resources, we added an additional
attribute, which indicates whether or not that resource was
an edge or cloud resource. During workflow generation, jobs
can be annotated with the type of resources they should be
matched with. During execution, HTCondor takes into account
this requirement in addition to other job requirements and
matches the job with the appropriate resources.

To support data movement operations workflows are config-
ured to use remote transfer protocols such as HTTP and SCP,
and local file system operations. These are managed by the
pegasus-transfer utility. Pegasus-transfer is invoked for each
job to handle staging in input data and staging out output
data. For jobs that are scheduled on locations where input
data already resides, symlinks are used by pegasus-transfer to
avoid unnecessary data movements and reduce overall disk
usage. One notable advantage of pegasus-transfer is that data
movement operations are decoupled from the jobs themselves.
For example, a change in the locations of initial input files
would only require a workflow-specific configuration change
with Pegasus.

C. Workflow Evaluation

For the evaluation, we used a drone application and two
other edge-to-cloud workflows. We use these applications to
demonstrate the feasibility of our approach and the benefits
of using an infrastructure that provides resources across the
edge-to-cloud continuum.

Typical UAV Workflow. This workflow [13] was developed
to represent data aggregation and analytics applications, which
run in edge-to-cloud environments. For such applications, ini-
tial input data is derived at the edge from multiple instruments



such as cameras and sensors mounted on drones. Each input
goes through pre-processing steps before being aggregated by
a single job that outputs the final result.

Wind Workflow. The Wind workflow [1], [14] is designed
to identify areas of maximum observed wind magnitudes from
a network of overlapping Doppler weather radars. Single radar
files in polarimetric format, from a total of seven radars, are
regridded into a common coordinate system. At a centralized
location, the workflow periodically takes any available scans
collected over a given time interval and creates a new file in
a latitude/longitude projection representing the highest winds
that have been observed during the time period.

Orcasound Workflow. Orcasound [15] is a community-
driven project that leverages hydrophone sensors deployed
in three locations in the state of Washington (San Juan
Island, Point Bush, and Port Townsend) in order to study
Orca whales in the Pacific Northwest region. The Orcasound
Pegasus workflow [16] processes the hydrophone data of one
or more sensors in batches for each timestamp and converts
them to a WAV format. Using the WAV output, the workflow
creates spectrogram images that are stored in the final output
location. Furthermore, using a pre-trained Orcasound model
developed by the community, the workflow scans the WAV
files to identify potential sounds produced by the orcas.
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Fig. 2. Workflow makespans for ten runs of each of the three workflows
under different scenarios.

Edge-to-Cloud Evaluation To evaluate our approach we
executed each of the three workflows in edge-only, edge-to-
cloud, and cloud-only scenarios. We emulated an edge-to-
cloud scenario and provisioned nodes on both Chameleon sites
at TACC and UChicago. At TACC, we deployed our cloud site,
where we assumed we could get unlimited resources, and at
UChicago we used Docker to deploy our edge nodes and limit
their processing capabilities [17].

In Fig. 2 we present the average makespan for ten runs of
each of the three workflows under the different scenarios, as a
percentage to the edge scenario. As can be seen, the wall clock
time (makespan) for each of the three workflows is different
for the three execution environments. While the typical UAV
workflow performs best in an edge-only environment, the

Wind and Orcasound workflows perform best in the cloud-
only environment.

Additionally, in Fig. 3 we present the average time the
workflows spent transferring data over the wide area network,
as a percentage of the edge scenario. This figure provides some
insights as to why the cloud-only scenario does not perform the
best in all cases. The UAV workflow was designed to favor
the edge-only scenario and without any computation at the
edge, the workflow is forced to spend 30 times more on WAN
transfers, negating any increase in compute power the cloud
offers. On the other hand, the Wind and Orcasound workflows
still have to spend about 4-times and 2-times more on WAN
transfers respectively, but the speed up these workflows are
getting from the cloud resources is enough to improve their
overall makespans (Fig. 2).

Overall, these results show the benefits and flexibility this
approach provides. Without any additional development, Pega-
sus can map the workflows to edge and/or cloud resources, en-
abling optimizations under constraints utilizing different trade-
offs (e.g., shorter makespan versus more network utilization).
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IV. NETWORK SERVICES FOR EDGE-TO-CLOUD
WORKFLOWS

The edge-to-cloud orchestration presented in Sect. III shows
the benefits of being able to explore the trade-off between
compute time, data transmission time, and queueing delays
for different workflows. In addition to this workflow orches-
tration, we also investigate how network services that are
based on programmable data planes can efficiently manage
the transmission of data in the edge-to-cloud continuum. Such
network services are an important component in the FlyNet
architecture since they support efficient data transport between
edge devices, edge servers, and the cloud. Figure 4 shows
an example scenario for search and rescue operations, which
requires efficient transmission of video footage to adequate
compute resources.

The advent of programmable data planes provides In-band
Telemetry (INT) capabilities that address network resource us-
age, identify resource contention, and provide detailed visibil-
ity into the network infrastructure. Based on these capabilities,



INT can be used to enable network Quality of Service (QoS)
assuring that workflows receive the required network service.

Fig. 4. Unmanned Aerial Vehicles can be utilized for a wide variety of appli-
cations such as e.g., search-and-rescue, and aerial surveillance. Challenges for
network services management need to be overcome to guarantee satisfactory
performance of network-edge based applications such as video delivery.

A. In-band Network Telemetry

INT-based Packet processors (e.g., P4 [18]) enable the gen-
eration of monitoring data. In contrast to existing approaches
INT based on P4 allows for the collection of network metrics
(delay, jitter, BW, etc.) on a per-hop basis. Thus, QoS-related
issues with a specific link can be pinpointed to a specific
segment of the path allowing network services to address these
issues with the goal to maintain the required QoS.

To further illustrate, Figure 5 depicts an INT implementa-
tion. At each of the programmable P4 switches INT data in the
form of the outgoing queue length is collected and added to the
packets traversing the link. At the egress point, this metadata
is removed from the packet (before it is forwarded to h2) and
analyzed. Queue sizes above a certain threshold might indicate
that the required QoS can no longer be supported along this
path. In this case, network services can be invoked to actively
manage the network (re-routing, limiting of other traffic) to
further guarantee the required QoS.

B. Network services control and workflow evaluation

As shown in Fig. 1, the FlyNet architecture is designed
to operate on advanced network infrastructures like FAB-
RIC [19]. The availability of programmable network elements
in FABRIC support INT scenarios as shown in Fig. 5. The
benefits of this approach can be demonstrated by a scenario in
which a swarm of drones sends video footage from a search-
and-rescue operation. Through the combination of INT and
Multi-hop Route Inspection (MRI) a control system can be
created that is aware of the entire network topology between
IoT devices (swarm of drones) scenario, edge servers, and
the cloud. It allows the detection of congestion within that
topology and can actively intervene to prevent it [20].

Figure 6 depicts a scenario in which aggregated video
streams from a swarm of drones are transmitted from edge
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server h1 to cloud server h2 via s1 and s2. Due to competing
traffic between h11 and h22 packet loss and delay can occur
for the video stream. With the aid of INT the link on which
this packet loss and delay occurs can be identified and MRI
is invoked to re-route the competing traffic (from h11 to h22)
via s3 mitigating the congestion on the s1 to s2 link.

As the results in Fig. 7 show, this INT-based network service
(implemented via P4 in FABRIC) is able to guarantee QoS for
the video streams generated by the swarm of drones. While
there is significant packet loss when no INT is applied (cases
1 & 2), there is no packet loss when an INT-based network
service is used (case 4).
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Fig. 7. Packet Loss measurements to show impact of increased congestion
on the path between s1 and s2 with capacity of 200 Mbps for the cases: w/o
P4 and Congestion of 800 Mbps (Case 1), w/o P4 and Congestion of 400
Mbps (Case 2), and with P4 (Case 3).



V. CONCLUSION

Unpiloted Aerial Vehicles (UAVs), often referred to as
drones, have become an important enabler for a wide vari-
ety of scientific and societally-impactful applications. FlyNet
supports these applications by providing automated resource
allocation, workflow instrumentation, and network service
management. It leverages the Pegasus workflow management
system for supporting and managing scientific workflows span-
ning from the edge to the core cloud and Mobius, a resource
provisioning system that can build a virtual edge-to-cloud
platform. In combination with network services that are based
on programmable network elements, FlyNet is able to allocate
network and compute resources to optimize the execution of
these UAV workflows. As a result, researchers can collect and
efficiently analyze data, make scientific discoveries, or react
to information coming from remote locations.

While we have created a platform that supports drone-based
research, there are many research issues that still need to
be addressed in the future. For example, the interdependency
between data collection and offloading under uncertain net-
work connectivity conditions has not been sufficiently studied.
Resource provisioning, task scheduling, and fault recovery that
takes into account a number of competing criteria including
performance, reliability, and power are still challenging. We
will address such research issues through the exploration of
new algorithm design and experimentation with FlyNet on
wireless testbeds like AERPAW [21].

In the future, we will utilize and extend the FlyNet plat-
form to conduct new drone-based research – supporting new
use cases like utilizing a network of drones for emergency
management, using a network of edge computing systems to
perform drone computations, and executing machine learning
algorithms with varying computational requirements across the
latency spectrum.

We also plan to harden, test, and expand its capabilities
to make them available as part of the overall cyberinfras-
tructure ecosystem. This will allow scientists, engineers, and
emergency managers to leverage FlyNet’s capabilities for their
work.
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